Three Mappings Related to Chebyshev-type Inequalities
نویسندگان
چکیده
In this paper, by the Chebyshev-type inequalities we define three mappings, investigate their main properties, give some refinements for Chebyshev-type inequalities, obtain some applications.
منابع مشابه
General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملBONFERRONI-TYPE INEQUALITIES; CHEBYSHEV-TYPE INEQUALITIES FOR THE DISTRIBUTIONS ON [0, n]
Abs t rac t . An elementary "majorant-minorant method" to construct the most stringent Bonferroni-type inequalities is presented. These are essentially Chebyshev-type inequalities for discrete probability distributions on the set {0, 1 , . . . , n}, where n is the number of concerned events, and polynomials with specific properties on the set lead to the inequalities. All the known resuits are ...
متن کاملGeneral Minkowski Type and Related Inequalities for Seminormed Fuzzy Integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملSolutions of variational inequalities on fixed points of nonexpansive mappings
n this paper , we propose a generalized iterative method forfinding a common element of the set of fixed points of a singlenonexpannsive mapping and the set of solutions of two variationalinequalities with inverse strongly monotone mappings and strictlypseudo-contractive of Browder-Petryshyn type mapping. Our resultsimprove and extend the results announced by many others.
متن کاملChebyshev and Grüss Type Inequalities Involving Two Linear Functionals and Applications
In the present paper we prove the Chebyshev inequality involving two isotonic linear functionals. Namely, if A and B are isotonic linear functionals, then A(p f g)B(q)+A(p)B(q f g) A(p f )B(qg) + A(pg)B(q f ) , where p,q are non-negative weights and f ,g are similarly ordered functions such that the above-mentioned terms are well-defined. If functionals are equal, i.e. A = B and if p = q , then...
متن کامل